ÁñÁ«ÊÓÆµ18

Skip to main content

Inventory Control and Learning for One-Warehouse Multistore System with Censored Demand.

Bekci, Recep Yusuf; Gümüş, Mehmet; Miao, Sentao. Inventory Control and Learning for One-Warehouse Multistore System with Censored Demand. Operations Research. Nov/Dec2023, Vol. 71 Issue 6, p2092-2110.ÌýÌýÌýÌý

Motivated by collaboration with a prominent fast-fashion retailer in Europe, the researchers focus their attention on the one-warehouse multistore (OWMS) inventory control problem, specifically addressing scenarios in which the demand distribution is unknown a priori. The OWMS problem revolves around a central warehouse that receives initial replenishments and subsequently distributes inventory to multiple stores within a finite time horizon. The objective lies in minimizing the total expected cost. To overcome the hurdles posed by the unknown demand distribution, the researchers propose a primal-dual algorithm that continuously learns from demand observations and dynamically adjusts inventory control decisions in real time. Thorough theoretical analysis and empirical evaluations highlight the promising performance of this approach, offering valuable insights for efficient inventory allocation within the ever-evolving retail industry. Motivated by our collaboration with one of the largest fast-fashion retailers in Europe, we study a two-echelon inventory control problem called the one-warehouse multistore (OWMS) problem when the demand distribution is unknown. This system has a central warehouse that receives an initial replenishment and distributes its inventory to multiple stores in each time period during a finite horizon. The goal is to minimize the total expected cost, which consists of shipment, holding, lost-sales, and end-of-horizon disposal costs. The OWMS system is ubiquitous in supply chain management, yet its optimal policy is notoriously difficult to calculate even under the complete demand distribution case. In this work, we consider the OWMS problem when the demand is censored and its distribution is unknown a priori. The main challenge under the censored demand case is the difficulty in generating unbiased demand estimation. In order to address this, we propose a primal-dual algorithm in which we continuously learn the demand and make inventory control decisions on the fly. Results show that our approach has great theoretical and empirical performances.ÌýÌýÌýÌý

Ìý